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The dynamic behaviour of a self-excited system with hysteretic non-linearity is
investigated in this paper. The averaging method is applied to the autonomous system and
the resulting bifurcation equation of the self-excited response is analyzed using the
singularity theory. The study of the bifurcation diagrams reveals the multivalued and
jumping phenomena due to the e!ect of the hysteretic non-linearity. Secondly, the steady
state response of the averaged system of the non-autonomous oscillator in primary
resonance is investigated. Due to the e!ect of the hysteretic non-linearity, the system exhibits
softening spring behaviour. A stability analysis shows that the steady state periodic response
exists over a limited excitation frequency range. It loses its stability outside the frequency
range through Hopf bifurcation and then the system undergoes quasi-periodic motion.
Finally, by using circle maps to get winding numbers, various orders of super- and
subharmonic resonance and mode-locking are investigated. The mode-locking, alternating
with the quasi-periodic responses, takes place according to the Farey number tree as
revealed in many other systems. The increase of the hystereticity can improve the stability of
subharmonic resonance.

( 2001 Academic Press
1. INTRODUCTION

Many structures are constructed in such a manner that a limited amount of slip takes place
between members either by tolerance design or as a consequence of deterioration. This is
particularly true for structures of a riveted or bolted construction. The restoring mechanism
of such a case can be considered as a hysteretic damper, as illustrated by Neyfeh and Mook
[1]. Hysteretic systems are non-smooth. Methods that are useful in smooth dynamical
systems are not applicable in this case. These include the Lyapunov}Schmidt reduction, the
centre manifold procedure and the normal form method [2, 3]. Nevertheless, classical
methods in non-linear oscillation, such as the averaging method, are particularly useful for
the analytical investigation of the dynamic behaviour of the hysteretic systems. The
averaging method was shown to be equivalent to the normal form method [4]. Using the
averaging method, Iwan and Furuike [5] studied the e!ect of hysteretic non-linearity on the
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transient and steady state responses of a single-degree-of-freedom dynamical system. The
results showed that a "rst order approximate analysis is quite adequate for this system.

Self-excited vibrations occur in many physical systems, such as supersonic #utter of plates
and shells [6], whirl/whip instabilities of rotor/bearing systems [7] and rotor/seal systems
[8], and an van der Pol oscillator in an electrical circuit [1]. The cause is either a negative
damping or cross-sti!ness (sources of cross-coupling in two transverse directions of the
displacement space). Usually when a critical value is exceeded by a critical parameter, the
system motion changes to a mode that is not conformable to external forces, and may be
extremely dependent on the initial conditions in some cases. This transition of the motion
pattern is called Hopf bifurcation and the resulting bounded motion is referred to as a limit
circle. A simple typical model of the self-excited system is described by the van der Pol
equation that has been extensively used in studying many self-excited phenomena [1].

Further, self-excited systems with hysteretic non-linearity abound in engineering. These
include an airfoil with hysteretic non-linearity when in supersonic #utter [6]. However,
studies on the non-linear dynamic behaviour of a self-excited system with hysteretic
non-linearity, to the authors' knowledge, are rarely reported. In this paper, the averaging
method is applied to a van der Pol system to obtain the averaged equations. For an
autonomous system, the bifurcation of the averaged equation is analyzed using singularity
theory to get the transition sets in the hysteretic parameter plane. For a non-autonomous
system, the steady state response in primary resonance is investigated and the stability
analyses of the response are provided to show the occurrence of quasi-periodic motion.
Using circle maps to get winding numbers, the phenomenon of mode-locking alternating
with quasi-periodic responses, over the frequency range of the external excitation from
before to after the primary resonance, is also revealed.

2. EQUATION OF MOTION

Consider the system in Figure 1. The mass is attached to a linear elastic spring, negative
damping (van der Pol type) and a hysteretic damper. The hysteretic damper consists of
a linear elastic spring and a Coulomb damper with amplitude constraint in two directions.
The hardening-type hysteretic restoring force F(x) is shown in Figure 2 in which
x represents the displacement of the mass. The relationships can be described by lines I}VII
and are tabulated in Table 1. For periodic responses, the travelling path depends on the
level of x

amp
, the amplitude of x, as indicated in Table 2. The system is in a sliding stage for

x
amp

3[a, a#b], because the Coulomb damper is sliding when the mass changes its
direction of motion. Rationally, it is in a constraint stage for x

amp
'a#b because sliding is

already stopped by the amplitude constraint when the mass changes its direction of motion.
Figure 1. A self-sustained system with hysteretic non-linearity.



Figure 2. The hysteresis restoring force with a hysteretic damper.

TABLE 1

¹he relationship of F(x) with x

Line x F(x)

I (a, a) ax
II [a!b, a#b) aa
III (b!a,#R) a(x!b)
IV (!a!b, b!a] !aa
V (!R, a!b) a(x#b)
VI (x

amp
!2a, x

amp
) a(x#a!x

amp
)

VII (!x
amp

, 2a!x
amp

) a(x!a#x
amp

)

TABLE 2

¹ravelling path of F(x)!x

x
amp

F(x)

(0, a) I
[a, a#b] IIPVIPIVPVIIPII
(a#b, R) IIPIIIPIIIPIVPVPVPII
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Besides the periodic response, the mass can also change its direction of motion irregularly.
In all cases, F(x) will travel along a slope line after the occurrence of the change of the
directions of motion either the same one along which the mass is travelling, or a new one
across the point in a horizontal line.

The dimensionless equation of motion of the system can be written as

xK#x!(b!x2 )xR #F (x)"f (t), (1)

where f (t)"K cosX t is an external force acting on the mass and b is the coe$cient of the
van der Pol damping. It is well known that for the autonomous van der Pol system, Hopf
bifurcation occurs at b"0 and the system will undergo self-excited vibration as b increases
[9]. So b is taken as the bifurcation parameter in section 3.
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3. BIFURCATION OF THE AUTONOMOUS SYSTEM

3.1. AVERAGING

For an autonomous self-excited system with hysteretic non-linearity, K"0. With a small
positive parameter e equation (1) can be rewritten in the following form that is suitable for
averaging:

xK#x"e[(b!x2 )xR !F (x)]. (2)

Transforming the dependent variable from x to u and h where

x"u cost, xR "!u sint, t"t#h

gives the standard form of the equation governing u and h:

du

dt
"e[u (b!u2 cos2t) sin2t#F(u cost) sint],

dh
dt

"e[(b!u2 cos2 t) sint cost#

1

u
F (u cost) cos t]. (3)

Using the Krylov}Bogoliubov "rst order approximation,

u"y#e;(t, y, c)#O(e2),

h"c#e< (t, y, c)#O(e2),
(4)

where y and c represent the amplitude and phase of the "rst order approximate solution of
the system. The right-hand sides of equation (3) are averaged over t from 0 to 2n (assuming
that y and c are constants) to give

dy

dt
"

y

2
[b!1

4
y2]#A(y),

dc
dt

"

1

y
B (y), (5)

where

A(y)"
1

2n P
2n

0

F (y cost) sint dt, B (y)"
1

2n P
2n

0

F(y cos t) cost dt.

To perform the above integrations, let t"2n!u, then

A(y)"!

1

2n P
2n

0

F (y cosu) sinu du, B(y)"
1

2n P
2n

0

F (y cos u) cosu du,



TABLE 3

Di+erent expressions of F(y cos u) and results of the integrals of A(y) and B(y)

y F (y cosu) A(y) B(y)

(0, a) ay cosu 0)u)n 0
ay

2

[a, b#a] G
aa

a (y cosu#y!a)

0)u)u
3

u
3
)u)n

!

2aa (y!a)

ny

ay

4n
[2(n!u

3
)#sin 2u

3
]

(b#a,R] G
a (y cosu!b)
aa
a (y cosu#b

0)u)u
1

u
1
)u)u

2
u
2
)u)n

!

2aba
ny

ay

4n
[2(n#u

1
!u

2
)

#sin 2u
2
!sin 2u

1
]
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where u represents an angle measured from axis x anti-clockwise in Figure 2. De"ne u
1
, u

2
and u

3
as

u
1
"cos~1C

a#b

y D , u
2
"cos~1C

a!b

y D , u
3
"cos~1C

2a

y
!1D

and consider the symmetry of the hysteretic restoring force F (x) over the range [0, n].
Corresponding to Tables 1 and 2, F(y cosu) and the integrals of A(y) and B (y) are
calculated and listed in Table 3 for di!erent levels of the amplitude.

3.2. BIFURCATION ANALYSIS

The steady state responses of the averaged system (5), which are actually the bifurcation
equations, can be obtained by setting dy/dt"dc/dt"0, to yield

>
1
(y, j, i)"y (y2!j)"0, y(a, (6a)

>
2
(y, j, i)"y4!jy2#i

1
y#i

2
"0, a(y(a#b, (6b)

>
3
(y, j, i)"y4!jy2#i

3
"0, y'a#b, (6c)

where j"4b, i
1
"16aa/n, i

2
"!ai

1
, i

3
"bi

1
. Taking j as a bifurcation parameter and

i as an unfolding parameter space, the bifurcation set Bs and the hysterestic set Hs for
the bifurcation equations >

2
"0 and >

3
"0 on plane (a, a) can be calculated according to

the method of singularity [10]. The results are listed in Table 4 (the double limit sets DLs
are empty). Due to the discontinuity of the connecting points of equations (6), the
connecting set TL

2
for >

2
"0 and >

3
"0 are also calculated (whilst TL

1
for >

1
"0 and

>
2
"0 is empty).
Therefore, the transition sets R"BXHXB

1
XTL

2
(B and H belong to >

2
"0, whilst

B belongs to>
3
"0) are found in Figure 3(a). The plane (a, a) for a'0 and a'0 is divided
1



TABLE 4

¹ransition sets of bifurcation equation (6)

Bifurcation
equation B H TL

2

>
2
(y, j, i)"0 Ma"0 or a"0N Ga"0 or a"0 or G(a#b)4"

16ba
n

aH
a2"

27a
256nH

>
3
(y, j, i)"0 Ma"0 or a"0N U (empty)

Figure 3. (a) Transition sets of averaged system (5). (b) and (c) Steady state responses of system (2) in parameter
areas I and III: - - - - -, theoritical value; L, numerical value.
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into four areas and the bifurcation diagrams are persistent, or topologically equivalent in
every area. The theoretically predicted results in the four areas and the corresponding
simulated results can be obtained by solving equation (6) and the original system (1),
respectively. The results for areas I and III in Figure 3(b) and (c) show that the analysis
based on the "rst order approximate averaging method is quite accurate for the
autonomous self-excited system with hysteretic non-linearity.



Figure 4. Initial conditions determine which of the multivalued responses is actual (a"0)05, a"0)02,
b"0)2, j"0)06): (a) small amplitude vibration (initial values: 0)02, 0); (b) large amplitude vibration (initial
values: 0)3, 0).
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The steady state self-excited response of the van der Pol system is described by equation
6(a) for any value of amplitude y. Due to the introduction of the hysteretic non-linearity, the
response of the system should be described by equations 6(a)}(c). The multivalues and jump
phenomena revealed in Figure 3 occur for y3[a, a#b], when the system is in the sliding
stage, under certain values of parameters a, a and b. When two stable steady state solutions
exist simultaneously, the initial conditions determine which of these represents the actual
response of the system. Letting the values of the parameters to be the same as in Figure 3(b)
and selecting j"0)06 which corresponds to two stable steady state solutions, the
small-amplitude vibration and the large-amplitude vibration for di!erent initial conditions,
respectively, are obtained as shown in Figure 4.

4. PRIMARY RESONANCE OF THE NON-AUTONOMOUS SYSTEM

4.1. AVERAGING

To analyze the response of the non-autonomous system (1) in primary resonance, that is
X+1. K"ek. Then equation (1) can be rewritten as

xK#x"e[(b!x2 )xR !F (x)#k cosX t]. (7)

Transforming the dependent variable from x to u and h where

x"u cost, xR "!u sint, t"X t#h

gives the following standard form of the equation governing u and h:

du

dt
"e[(b!u2 cos2t)u sint#F (u cost)!k cosX t] sint,

dh
dt

"1!X#

e
u

[(b!u2 cos2 t) sint#F (u cost)!k cosX t] cost.

(8)
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Using the procedure similar to that in section 3, the "rst order approximate averaging
equations are

dy

dt
"

y

2 Cb!
1

4
y2D#A(y)!

k

1#X
sin c,

dc
dt

"1!X#

B(y)

y
!

k

1#X
cos c,

(9)

where A(y) and B(y) are listed in Table 3. The steady state response of equation (9) can be
obtained from equations (10):

X Ab!
1

4
y2B#2

A(y)

y
"

k

y
sin c,

1!X2#2
B(y)

y
"

k

y
cos c.

(10)

Squaring and adding the results of these equations gives

CX Ab!
1

4
y2B#2

A(y)

y D
2
#A1!X2#2

B (y)

y B
2
"A

k

yB
2
. (11)

Equation (11) is an implicit equation for the amplitude of the steady response y as a function
of X and k, the frequency and the amplitude of the external excitation; b, the bifurcation
parameter of the van der Pol system; and a, b and a, the hysterestic parameters. With the
values of the system parameters, a"0)3, b"0)8, a"1 and b"0)5 and 1 respectively the
estimated frequency}amplitude curves are shown in Figure 5. For weak excitation, when
the level of excitation is less than a critical value k

#
, the response diagrams consist of two

disconnected branches*a lower branch running near the X-axis and an upper branch
consisting of a closed curve (see for example, b"0)5, k"0)1 and b"1, k"0)3 and 0)5).
When k tends to be zero, the upper ones tend to be a point. Following the calculation, the
degenerating points can be located at (1)14, 1)03) and (1)25, 1)91) for b"0)5 and
1 respectively. Contrarily, as k increases, the upper curves expand while the lower ones
move away from the X-axis. For su$ciently large k, say k*k

#
, the two branches join

together (b"0)5, k
#
"0)175; b"1, k

#
"0)81). It is obvious that the amplitude of the

resonant response increases with k, other parameters being "xed. Similarly, it increases also
with b when other parameters (including k) are "xed. For example, the maximum of
y corresponding to b"0)5 and 1 is 1)58 and 2)21 for k"0)5, and 1)83 and 2)25 for k"1
respectively.

In Figure 5, both y"a (0)3) and y"a#b (1)1) are represented by the dashed horizontal
lines. For y(a or y'a#b, the backbone curves (also dashed) bend to the right, so that
the vibration of the system in primary resonance exhibits hardening spring behaviour.
Otherwise, softening spring behaviour is exhibited and the backbone curve bends to the left.
In general, the sti!ness of the system decreases when it is in the sliding stage. As a result, the
non-linear resonant frequency of the system can increase or decrease as X is increased. This
characteristic results also from the hysteretic non-linearity in the system.



Figure 5. Frequency}amplitude curves (a"0)3, b"0)8, a"1): (a) b"0)5 (b) b"1: L*numerically stable
solutions.
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4.2. STABILITY ANALYSIS

In order to determine the stability of these steady state responses, let

y"y
s
#y

p
, c"c

s
#c

p
, (12)

where (y
s
, c

s
) are the solutions of equations (10). y

p
and c

p
represent the perturbations to the

steady response. Substituting equation (12) into equation (9) and using equation (10), the
linear terms are

yR
p
"

1

2 Cb!
3

4
y2
s
#A@ (y

s
)D y

p
!

k

1#X
cos c

s
c
p
,

cR
p
"

1

y
s
CB@ (y

s
)!

B (y
s
)

y
s

#

k

1#X

cos c
s

y
s
D y

p
#

k

1#X

sin c
s

y
s

c
p
,

(13)

where

A@(y
s
)"

LA(y)

Ly K
y/ys

, B@(y
s
)"

LB(y)

Ly K
y/ys

.
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Letting y
p
"yN

p
ejt and c

p
"cN

p
ejt, one gets

1

2 Cb!
3

4
y2
s
#A@ (y

s
)!2jD yN

p
!

k

1#X
cos c

s
c6
p
"0,

1

y
s
CB@(y

s
)!

B(y
s
)

y
s

#

k

1#X

cos c
s

y
s
D yN

p
#A

k

1#X

sin c
s

y
s

!jB cN
p
"0.

(14)

Using equation (10), the characteristic polynomial of the non-trivial steady solution is

j2!Ej#F"0, (15)
where

E"b!
1

2
y2
s
#

1

2
A@(y

s
)#

A(y
s
)

y
s

,

F"

1

4 Cb!
3

4
y2
s
#A@(y

s
)DCb!

1

4
y2
s
#2

A (y
s
)

y
s
D#[1!X#B@ (y

s
)]C1!X#

B (y
s
)

y
s
D .

When F'0 and E(0, the roots of equation (15) are real and negative, so the steady
solutions are stable. When F'0 and E"0, there is a pair of pure imaginary eigenvalues
for the averaged system (9), so Hopf bifurcation occurs. In this case, the motion of the
original system (7) will be amplitude-modulated or quasi-periodic due to the two
incommensurate frequencies involved in the motion; one is the frequency f of the external
force and another the non-linear resonant frequency f

cr
resulting from Hopf bifurcations.

When F(0, the roots of equation (15) are real with opposite signs, so the predicted
motions correspond to saddle points and are unrealizable. Therefore, the stability of the
steady state motion on the amplitude}frequency plane can be classi"ed by the areas
composed of the dash-pot curves E"0 and F"0, as indicated in Figure 5. The solutions
located inside the enclosed shadow areas which represent F(0 are unrealizable. From
E"0, a straight line parallel to X-axis, y"y

E
, is obtained and y'y

E
results in E(0.

Therefore, the stable periodic responses exist over a limited range of the external excitation
frequency around the system's non-linear resonant frequency (the averaging method, or any
other perturbation method, is e!ective only inside this range). Take b"0)5 for example,
then y

E
"0)901. The stable steady state periodic responses exist over X range of 0)87}1)36

and 0)44}1)55 for k"0)5 and 1 respectively. As y
E
3[a, a#b], so the quasi-periodic

motion occurs in the sliding stage. But if b"1, then y
E
"1)38, so the quasi-periodic motion

occurs in constraint stage.
The results of numerical simulations are represented by &&o'' in Figure 5, which shows that

for b"0)5, both the amplitudes of the steady state periodic responses and the frequency
ranges over which the steady state periodic responses exist can be predicted very accurately.
For b"1, though the amplitudes are not as accurate as in the former case, the predicted
frequency ranges can still be quite accurate.

5. MODE-LOCKING IN THE SELF-EXCITED SYSTEM WITH HYSTERETIC
NON-LINEARITY

Dynamic systems in quasi-periodic motions can undergo mode-locking (or frequency,
phase locking or entrainment) in which the two frequencies are related by a "xed ratio of



Figure 6. Bifurcation charts of the system (a"0)3, b"0)8, a"1, b"0)5 and k"1): p, periodic motion; q-p,
quasi-periodic motion.
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integers p/q [11}13]. Circle maps have long been used to reveal the transitions from
quasi-periodic regimes to chaos as well as quasi-periodic behaviour and mode-locking. By
using circle maps, a so-called winding number o"f

cr
/ f, that is, the ratio of the non-linear

resonant frequency to the forcing frequency can be obtained [14]. If o is irrational, the
response of the system is quasi-periodic. The discrete points of the "rst order PoincareH map,
obtained by sampling solutions of the system stroboscopically at t"0, 2n/X, 2(2n/X),2,
wind around a closed curve. If o is rational, i.e., o"p/q, the response of the system is
q-periodic, or in p/q mode-locking state. Then, q clusters of the "rst order PoincareH points
wind around a closed curve, as a whole, with intervals. Selecting a suitable hyper plane in
the state space which transverses the trajectory of the system as the second order PoincareH
section, one "nds p second order PoincareH points during the appearance of any successive
q "rst order PoincareH points. This characteristic can be used to determine the rational
winding number simply and e$ciently.

From the de"nition of the winding number, it is found that o'1 when the frequency of
the external force is lower than the non-linear resonant frequency (i.e., f(f

cr
); otherwise,

o(1 (i.e., f'f
cr
). The p/q mode-locking states are also referred to as super- or

subharmonic resonances of order p/q (p order superharmonic resonance for q"1). Many
studies suggest that the mode-locking states can remain, or the frequency ratio can be
locked, over a "nite range of one or another system parameter space, such as the forcing
frequency. The winding number represents the order of mode-locking which could be
organized according to the Farey tree, although some locking intervals are too narrow to be
detected in actual numerical simulations or experimental studies [12].

Letting a"0)3, b"0)8, a"1, b"0)5 and k"1, the bifurcation chart of the responses of
the system (7) are obtained by numerical simulation over the forcing frequency X range of
0)1}4)0, i.e., including the primary resonance (X+1), as shown in Figure 6. As already
mentioned, the primary periodic motion exists when X"0)44}1)55, and the motion outside
this range should be quasi-periodic. The bifurcation chart proves the theoretically predicted
result. The mode-locking alternates with quasi-periodic responses both before and after the
primary resonance using circle maps. Some results are shown in Figure 7 in which the
winding number os, phase portraits, "rst order PoincareH maps and spectra of x component
are included. The superharmonic resonances with order up to 4 and subharmonic
resonances with order up to 1

3
are depicted. Figure 6 shows that it is easy to identify the

various orders of subharmonic resonances due to the general fact that the locked ranges are



Figure 7. The mode-lockings alternating with quasi-periodic responses both before and after the primary
resonance: (a) winding number os, phase portraits and PoincareH maps; (b) spectra of x component.
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rather wide such as the states of o"4/5 (X"1)71}1)75), 3/5 (X"1)83}1)92), 3/7
(X"2)58}2)62), 1/2 (X"2)21}2)28) and 1/3 (X"3)23}3)4). But the opposite situation is
found through careful investigation when a"0)2 and b"0)2. The results suggest that the
stronger the hysteresis e!ect (as the hysteretic parameters' values are increased), the more
stable the subharmonic resonances. In the case of subharmonic resonances, the vibrations
can be violent and bring the structures into danger [1].

The Farey number tree with 1
2

and 1
3

at the top level are shown in Figure 8. Under the
guidance of the Farey number tree, the rational winding numbers between 1

2
and 1

3
can be

identi"ed as a function of X for a"0)3 and b"0)8, and the result is shown in Figure 9.
Similar to many other published studies, though there are many obvious &&steps'' indicating
the mode-locked ranges of X, there are still some cases predicted by the Farey tree, even in
the third level from the top, that cannot be identi"ed by simulation.



Figure 8. Mode-locking tongues positioned in a Farey number tree. Cases with superscript * were not identi"ed
in Figure 9.

Figure 9. Winding number versus frequency of the excitation. The &&steps'' indicate mode-locking. Cases with
superscript * belong to the lower level not shown in Figure 8.
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The two frequencies f and f
cr

are also referred to as fundamental in the sense that every
peak in the spectra of the responses could be a linear combination of f and f

cr
, such as 2 f}f

cr
,

2 f
cr
} f or f}2 f

cr
, etc. For example, both f /7 for X"2)6 and 3 f /17 for X"2)7 in Figure 7 (b)

are equal to f}2 f
cr
.

6. CONCLUSION

The non-linear dynamic behaviour of a van der Pol system with hysteretic non-linearity
has been studied. The results showed that the "rst approximate analysis using the averaging
method is quite adequate for determining the steady state responses of the system. The
hysteretic non-linearity is found to display its e!ect on the steady state self-excited responses
of the system mainly when the system is in the sliding stage, i.e., the Coulomb damper is
always sliding when the mass changes its direction of motion. The response of the
autonomous system can be multivalued and jumps can occur as the bifurcation parameter
increases, whilst the non-autonomous system can exhibit softening spring behaviour in
primary resonance. For the latter, further study revealed that the steady state response of
the primary resonance loses its stability through Hopf bifurcation and then undergoes
quasi-periodic motion as the frequency of the external force leaves a certain range. By using
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circle maps to get the winding numbers, the super- and subharmonic resonances in various
orders de"ned as mode-lockings were also investigated. The mode-lockings, alternating
with quasi-periodic responses, take place according to the Farey number tree as has been
revealed in many other systems. The increase of the hysteretic parameters' values to the
conclusion that subharmonic resonances in various orders exist over a wider frequency
range and can be identi"ed more easily.
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